Cells and Cell Theory

Eukaryotic versus Prokaryotic Cells

- Prokaryotic Cells lacking a nucleus and other membrane-bound organelles.
- Eukaryotic Cells containing a nucleus.
 - Organelles Membrane-bound bodies found within eukaryotic cells.

Origin of Eukaryotes

- Ancestral chloroplasts were photosynthetic, prokaryotes that became endosymbionts
- Relationship began as parasitic or undigested prey
- Assumed here that endomembrane infolding evolved first, i.e., cell already evolved nucleus, ER, ...

A prokaryote ingested some aerobic bacteria. The aerobes were protected and produced energy for the prokaryote

B Over a long period of time the aerobes became mitochondria, no longer able to live on their own

C Some primitive prokaryotes also ingested cyanobacteria, which contain photosynthetic pigments

Cyanobacteria became chloroplasts, unable to live on their own

	A evolo	rc bacter	Ma av	d Cy	and be	eteria			
	Mi	tochenda	O\		OMOR	rplasts			
							y ONE	-	
	Purre	ut mitou	rand Ma.	chli	zo last	and o	wh no de	i have!	
			ol mem		ψ · σ · σ · σ · σ · σ · σ · σ · σ · σ ·	1 00. 01			
					-rom i v	nvelu	is and o	ne another	\
	\								
(3)) ny wat	usis-te	stabl s	starteme	nt of	What Y	or expect	- to tind	
			9/1	1		1 0 [1			
	/ Law-	- abserv	ua repe	oved ly,	Many	timus, f	tappins th	u Save way,	
		ot ton,	an eq	na 41 M	€Χ.	rzma	or D=		
(2) theory-	- explain	s an o	hseryat	ion or	set of	- do serv	ations	
	0								

Secondary Endosymbiosis and Origin of Agal Diversity

Endosymbiosis

Fusion evolution - major process for forming the diversity of life

"mitochondria" transfer - 2000 mya

"chloroplast" transfer - 1600 mya

A. Prokaryotes

Small, simple cells (relative to eukaryotes) Size: about 1 μ m (1 micron) No internal membrane-bounded organelles No nucleus Simple cell division

Contain the;

1. true bacteria (Eubacteria) Eukarya
 2. archaebacteria Archea

1. True Bacteria = Eubacteria

Majority of bacteria

Examples include: E.
 coli, Lactobacillus
 (yogurt), Lyme disease

Eubacteria

Peptidoglycan cellwalls (carbs & AA)

•Separated into Gram + and - forms

2. Archaebacteria

- Live in extreme environments: high salt, high temps
- Different cell wall
- Very different membrane lipids
- Unusual nucleic acid sequence

Archaeabacteria

The prokaryotes Archaebacteria are organized into 3 types based on physiology,

- Methanogens produce methane
- Extreme halophiles live at very high concentrations of salt (NaCl);
- Extreme (hyper) thermophiles live at very high temperatures.

Bacteria in the Environment

example:
Iron
utilizing
Baceria

- A) An acid hot spring in Yellowstone is rich in iron and sulfur.
- B) A black smoker chimney in the deep sea emits iron sulfides at very high temperatures (270 to 380 degrees C).

B. Eukaryotes

- Bigger cells: 10-100 μm
- True nucleus
- Membrane-bounded structures inside. Called organelles
- Divide by a complex, well-organized mitotic process

Liver Cell 9,400x

Eukaryotes

- Larger more complex cells that make up most familiar life forms: plants, animals, fungi, algae
- Surrounded by a cell membrane made of lipids
- Have membrane-bound organelles, including a nucleus

Anatomy of the Plant Cell